Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization.
نویسندگان
چکیده
This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe2O4 (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using magnetic and structural nanoparticle characterization, we identify key synthetic parameters in the thermal decomposition of organometallic precursors that yield optimized magnetic nanoparticles over a wide range of sizes and compositions. The developed synthetic procedures allow for gram-scale production of magnetic nanoparticles stable in physiological buffer for several months. Our magnetic nanoparticles display some of the highest heat dissipation rates, which are in qualitative agreement with the trends predicted by a dynamic hysteresis model of coherent magnetization reversal in single domain magnetic particles. By combining physical simulations with robust scalable synthesis and materials characterization techniques, this work provides a pathway to a model-driven design of magnetic nanoparticles tailored to a variety of biomedical applications ranging from cancer hyperthermia to remote control of gene expression.
منابع مشابه
Synthesis of nickel ferrite nanoparticles as an efficient magnetic sorbent for removal of an azo-dye: Response surface methodology and neural network modeling
In this research, nickel ferrite (NiFe2O4) nanoparticles (NFNs) are prepared through coprecipitation method, and applied for adsorption removal of a model organic pollutant, methyl orange (MO). The characterization of t...
متن کاملSynthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method
In this research cobalt ferrite (CoFe2O4) nano-crystalline powders were prepared by simple chemical precipitation method using cobalt sulfate. The CoFe2O4 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infra-red spectroscopy. The crystallite size of CoFe2O4 nanoparticles was calculated by Debye–Scherrer formula. The effect of precursor...
متن کاملSynthesis of Magnesium Ferrite-Silver Nanostructures and Investigation of its Photo-catalyst and Magnetic Properties
In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined. Then MgFe2O4-Ag nanocomposites were prepared by a simple chemical precipitation. The structural ...
متن کاملUltrasonic-assisted solvothermal synthesis of self-assembled Copper Ferrite nanoparticles
The aim of this work was to characterize copper ferrite nanoparticles synthesized via solvothermal method and to investigate the effects of ultrasonic waves on the synthesis efficiency. Crystal structure, functional groups, microstructure, particle size, magnetic properties, specific surface area, porosity distribution and photocatalytic activity of the synthesized nanoparticles were also inves...
متن کاملA Simple Thermal Decomposition Method for Synthesis of Co0.6Zn0.4Fe2O4 Magnetic Nanoparticles
Magnetic nanoparticles attracted a great deal of attention in the medical applications due to their unique properties. The most exceptional property of magnetic particles is their response to a magnetic force, and this property has been utilized in applications such as drug targeting, bioseparation, contrast agents in magnetic resonance imaging (MRI) and heating mediators for cancer therapy. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 10 شماره
صفحات -
تاریخ انتشار 2013